Heat Annealing Influences the Optical Property of 2D MoS₂ Nanoparticles

U. Afonina, G. Dovbeshko, M. Olenchuk

Department of Physics of Biological Systems Institute of Physics NAS of Ukraine, Nauky Avenue, 46, Kiev,03028, Ukraine

Introduction

Two dimensional (2D) materials have exhibited extraordinary properties different from those for bulk materials. Among 2D materials, transition metal dichalcogenides (TMDCs) became the good choice for the applications of nanoscaled semiconductor devices and TMDC has become one of the most extensively invested 2D materials for its mechanical, magnetic, electrical and optical properties. The typical example of TMDC is MoS₂, which has a unique layered structure similar to graphene, variable band gap, interlayer weak van der Waals forces and flexibility.

Materials and Methods

We have investigated 2D MoS₂ powder and flakes from Sigma Aldrich. MoS₂ nanoparticles were annealed in the tube furnace purged and filled with the argon gas (50 Scm) in quartz tube at the temperature of 600°C for one hour.

IR spectra were recorded using an INVENIO-R instrument (Bruker, Germany).Raman spectra were recorded using spectrometer Jobin-Yvon T64000 (Horiba, France) with laser 488 nm, power 0,2 mW for MoS2 powder and 1 mW for MoS2 flakes.

Results and Dissuasion

Fig. 1. Images of unannealed (a) and annealed (b) 2D MoS2 flakes and unannealed (c) and annealed (d) 2D MoS2 powder In the IR spectra of 2D MoS₂ powder, a band of 468 cm⁻¹ was detected and its shift to 469 cm⁻¹ was observed for annealed 2D MoS₂

Fig. 2. IR spectra of 2D MoS₂ powder

Bands of 150, 189, 285 (1T' single layer), 383, 408, 450, 468, 568, 599 cm⁻¹ were observed for Raman spectra of both 2D MoS₂ powder and flakes. After annealing of 2D MoS₂ powder and flakes 1T' single layer is reduced by 10% and 25% respectively. For flakes the decrease in the number of defects due to annealing was observed.

Fig. 3. Raman spectra of 2D MoS₂ powder and flakes

Acknowledgment

