

XXV ISSSMC-2021

FTIR EXPLORE OF THE CH₃CN•••HF COMPLEX IN GAS PHASE AND COMPUTATIONAL METHODS

A.Amonov¹, K.G.Tokhadze², G.Murodov¹, A.Jumabaev¹, G.Nurmurodova¹ ¹Department of Physics, Samarkand State University, Samarkand, Uzbekistan ²Department of Physics, Saint Petersburg State University, Russia *Corresponding author: <u>akhtamul@gmail.com</u>

DEPARTMENT OF PHYSICS, SAMARKAND STATE UNIVERSITY, REPUBLIC OF UZBEKISTAN

- Range 400 12000 cm⁻¹
- **Resolution 0.002 см**⁻¹
- T = 6 20 K
- **OPUS software**

Temperature and pressure control

DIAGRAM SCHEME OF THE BRUKER IFS 125 HR SPECTROMETR

>FTIR spectroscopy has dramatically improved the quality of infrared spectra and minimized the time required to obtain data

> With constant improvements to computers, infrared spectroscopy has made further great strides

> IR spectroscopy is a technique based on the vibrations of the atoms of a molecule

>FTIR 200 times larger than grating spectrometers(S/N; where S = signal and N = noise)

Change of spin	Change of orientation	Change of configuration	Change of electron distribution	Change of electron distribution	Change of nuclear configuration
Radiowave	Microwave	Infrared	Visible and ultraviolet	X-ray	γ-ray
	10	10 ³	10 ⁵	10 ⁷	10 ⁹
		Energ	gy (J mol ^{−1})		

CAVITIES FOR A GAS PHASE

10⁻⁵ – 10⁻⁷мм Нg

Indium for a window, Teflon

ANHARMONIC CALCULATIONS

Only $\Delta V = +1$

No selection rules

Fundamental transitions Overton Hot transitions Combination transitions

 $H = -\frac{\hbar^2}{2m} \sum_{\mu} \frac{d^2}{dq_{\mu}^2} + \sum_{i} \frac{M_j^2}{2I_i} + V(q_1, q_3, \theta_1, \theta_2, \theta_3, \theta_4)$

The IR spectra of gas mixtures $CH_3CN \bullet \bullet \bullet HF$ were recorded at room temperature in the absorption region 4200–2100 cm⁻¹ by using of Bruker IFS125HR spectrometer. The resolutions were varying from 0.1 to 0.005 cm⁻¹ at total pressures between 20 and 100 Torr of mixtures $CH_3CN \bullet \bullet \bullet HF$.

FTIR SPECTRUM OF THE CH₃CN +HF COMPLEX IN GAS PHASE P=110 TORR AND RESOLUTION 0.01 CM⁻¹.

SPECTRAL MOMENTS OF CH₃CN +HF COMPLEX

$$M_1^* = M_0^{-1} \int_{v_1}^{v_2} v \cdot D(v) dv = v_0 \qquad \qquad M_2^* = M_0^{-1} \int_{v_1}^{v_2} (v - v_0)^2 \cdot D(v) dv$$
$$D(v) = \lg \left(\frac{I_0}{I}\right) \rightarrow \text{ Optical density,} \qquad \qquad M_0 = \int_{v_1}^{v_2} D(v) dv$$

	$M_{1}^{*} sm^{-1}$		$M_{2}^{*} sm^{-2}$	
T(K)	EXPERIMENT	THEORY	EXPERIMENT	THEORY
190	3470	3478	4400	6685
230	3480	3481	5900	7200
285	3490	3485	8700	7694

COMPUTATIONAL METHODS

The electronic structure of the $CH_3CN \bullet \bullet HF$ complex was calculated using the Gaussian 09 and Gaussian 16 package of programs in the second order mp2 set of the atomic functions 6-311++G(3df,3pd) and with the basis set superposition error taken into account.

EQUILIBRIUM CONFIGURATION OF THE TITLE COMPLEX

Calculated in Gaussian 16 package of program with the mp2//6-311++G(3df,3pd) approximation

GEOMETRICAL PARAMETERS OF THE TITLE COMPLEX IN EQUILIBRIUM CONFIGURATION

Monomer	Upon complex formation
r(H–F)=0.9317 Å, r(C≡N)=1.1647 (The all) r(C–C)=1.4552 Å r(H–C)=1.0865 Å r(NH) = 1.8220 Å ∠HCH=109.20°(The all) ∠HCC=109.74°(The all)	r(H-C)= 0.0001 Å r(C-C)=0.0021 Å r(C=N)=0.0036 Å ∠HCH=0.20° increase ∠HCC =0.20 decrease
	r(H–F) increases by 0.015 Å

CALCULATED HARMONIC VIBRATIONAL FREQUENCIES BANDING ENERGY AND DIPOLE MOMENTS OF THE COMPLEX IN EQUILIBRIUM CONFIGURATION

*****THE v₄ STRETCHING H-BOND VIBRATION 177.5 cm⁻¹

*****THE v₆ BENDING VIBRATION 681.2 cm⁻¹

*****THE v₁ H–F STRETCHING VIBRATION 3837.0 cm⁻¹ LOWERING OF the H–F VIBRATION FREQUENCY BY 339.4 cm⁻¹

*****THE H–F STRETCHING INTENSITY OF THIS VIBRATION INCREASES FROM 117 to 1104 KM/MOL UPON COMPLEX FORMATION

*****THE BINDING ENERGY OF THE COMPLEX 35.97 KJ/MOL

***DIPOLE MOMENT FOR THE EQUILIBRIUM NUCLEAR CONFIGURATION OF THE COMPLEX** $\mu_{compl} = 7.45$ D

3D POTENTIAL ENERGY PLOT AS A FUNCTION OF r(HN) AND r(CN) DISTANCES IN THE TITLE COMPLEX

3D POTENTIAL ENERGY PLOT AS A FUNCTION OF r(H...N) DISTANCE AND r(HCN) ANGLE IN THE TITLE COMPLEX

3D POTENTIAL ENERGY PLOT AS A FUNCTION OF ∠HCN ANGLE AND r(CN) DISTANCE IN THE TITLE COMPLEX

CONCLUSIONS

*****The fine structure of the absorption spectrum of the $CH_3CN...HF$ hydrogen-bonded complex in the region of the $v_1(HF)$ band studied (4000–3000 cm⁻¹) in the gas phase

*****The main spectral characteristics of the CH₃CN...HF complex were determined from a model calculation carried out in this paper

The frequency of the v_1 **(HF) stretching vibration in the**

CH₃CN...HF complex (3628.5 cm⁻¹) obtained with allowance for the anharmonic coupling of this vibration to librations of two monomers in the same plane is in good agreement with the experimental value 3627 cm⁻¹

*****These results, as well as the performed analysis of the influence of intermode anharmonic interaction on the vibrational energy levels and the spectral transition frequencies and intensities of the CH₃CN...HF complex studied in detail

Several 3D potential energies obtained which is important to analyses structure of the complex and determined dipole moment of the title complex

Calculated parameters of the complex can be used to link between internal dynamics and IR absorption spectra of the complex in gas phase

THANK YOU FOR YOUR ATTENTION!