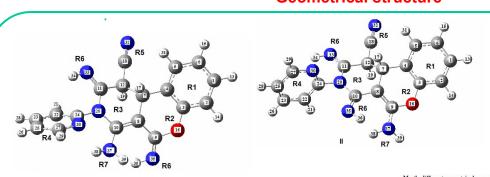
Molecular Modeling, IR Spectra and Structure of Chromenopyridinecarbonitrile Systems

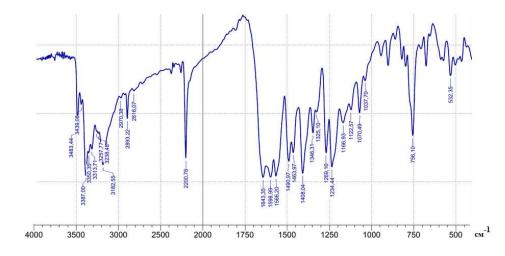
I.V. Ivlieva (Peretokina), A.A. Mescherekova, L.M. Babkov, V.V. Sorokin Saratov State University, Saratov, Russia Corresponding author: Imbabkov@gmail.com

Chromeno[3,4-c]pyridine carbonitrile systems are the subject of intensive researches because they are biologically active. Medical applications require a good knowledge of their properties.


The aim of the study was to interpret the IR spectrum of a mixture of amino-imino tautomers such as 5-amino-2,4-diimino-3-(pyridine-2-yl)-2,3,4,10 b-tetrahydro-1H-chromeno[3,4-c]pyridine-1-carbonitrile (I) and 4-amino-2,5-diimino-3-(pyridine-2-yl)-2,3,5,10 b-tetrahydro-1-chromeno[3,4-c]pyridine-1-carbonitrile (II).

The main problems - modeling of the molecules, and interpretation of their IR spectrum

IR spectrum was measured at room temperature at Fourier Spectrophotometer Shimadzy IR at the area 400-3700 cm-1.


Method - density functional method (B3LYP/6-31 G(d))

Geometrical structure

Tautomers differ from each other by the place of =NH and –NH2 groups and by the angle the ring R4 is twisted about.

Measured and simulated IR spectra

cm ⁻¹	Viteory Cm ⁻²		I,km/mol		Assignment	
	I	H	I	п	I	II
1037		1054	-	137,6		Q _{R2} (CO), β _{R2 R6} (C=NH), β _{R3 R6} (C=NH)
	1252		102,6		Q R4 (CC), β R3 R6 (C=NH), β R4 (CCH)	
1346	-	1353	-	101,3	1	β _{R3} (CCH), χ _{R3} _{R3} (CCCH), χ _{R3} (CCCH), χ _{R1} _{R3} (CCCH), Q _{R1} (CC), χ _{R3} (HCCH), β _{R1} _{R3} (CCH)
1346	-	1365	-	209,0		χ _{R3 R5} (HCCC), β _{R1 R3} (CCH), χ _{R3} (HCCC), χ _{R2 R3} (CCCH), β _{R3} (CCH), β _{R2 R6} (C=NH)
	-	1372	-	24,3	-	Q _{R3} (CN), β _{R3 R7} (CNH), Q _{R3} g ₇ (CN), β _{R3 R8} (C=NH), γ _{R3} g ₇ (CCN)
1597	1590	-	9,1		Q _{R1} (CC), β _{R1} (CCH), δ _{R7} (HNH), γ _{R1} (CCC)	1
		1611		261,9		Q R2 Rd (C=N), Q R3 (CC), γ R3 R2 (CCO)
	1622	-	621,0		$Q_{R3 R6}$ (C=N), $Q_{R3 R2}$ (CC), δ R^{\uparrow} (HNH), $\beta_{R2 R7}$ (CNH), Q_{R2} R^{\uparrow} (CN)	
	-	1627	-	65,4	-	å g? (HNH)
1643	1644	-	64,2		Q R3 R6 (C=N), Q R2 R3 (CC), Q R2 R7 (CN)	1
	-	1644	-	162,0		Q R3 R6 (C=N)
3439 3483	3466	3439	43,4	63,2	q g7 (NH)	

CONCLUSIONS

- 1. The structure of tautomers I, II was established.
- 2. The presence of tautomers I, II in the sample was established.
- 3. The IR spectrum was interpreted.
- 4. The spectral and structural characteristics of compounds I and II have been established.
- 5. Experimental IR spectrum is superposition of spectra of tautomers I and II.